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Abstract. In this communication we study the convergence of the augmented-space recursion
and illustrate the errors produced because of using only a finite part of the full augmented space
and termination of the recursion after a finite number of steps. We illustrate this by using a
TB-LMTO-based augmented-space formalism for a 50–50 AgPd alloy and studying how the
moments of the density of states, the Fermi energy and the band energy converge

1. Introduction

In a series of recent communications [1–8] we have illustrated the applicability and
usefulness of the augmented-space method in conjunction with the recursion technique
of Haydocket al [9] in describing configuration-averaged properties of disordered alloys.
These averages include correlated configuration fluctuations of clusters, which are not taken
into account in the standard mean-field theories of alloys, and the calculations have been
done using first-principles descriptions like the tight-binding linearized muffin-tin orbitals
method (TB-LMTO). One of the remaining uncertainties of the method, in comparison with
the usualk-space integration mean-field techniques, is how to demonstrate the convergence
of the recursion in augmented space. In an earlier paper [3] we showed that the use of
the local symmetries of the underlying lattice in real space and the symmetries of the
augmented space arising out of the homogeneity of the disorder† allows us to carry out
the recursion in an invariant subspace of the full augmented space. This subspace is of
much reduced rank and therefore allows recursion to proceed to sufficient steps to ensure
accuracy. Sanyalet al [6] showed that a transformation of the Hamiltonian allows us to
treat the alloy system as if it were one with diagonal disorder alone. Ghoshet al [10] started
from this transformed Hamiltonian and showed, by using recursions at different energies,
that the continued-fraction coefficients have very weak energy dependence. They illustrated
that by carrying out recursions at a few selectedseedenergies across the spectrum we may
spline fit the coefficients across the spectral range and obtain the density of states accurately
and within a very economical computational time. In this communication we shall use
the above ideas and illustrate the nature of the convergence of various calculated physical
quantities.

Since the details of the method have been described at length in the earlier articles
[1–10], we shall introduce here only the essential results on which our calculations are
based. The main basis of the method involves constructing the configuration space of the

† Homogeneity of the disorder requires the probability densities of the Hamiltonian matrix elements in real space
to be independent of the site label.
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Hamiltonian parameters. For a binary random distribution this space is isomorphic to the
configuration space of an Ising model on the lattice. The augmented space is the product
space of this configuration space and the lattice space spanned by the countable tight-
binding LMTO basis. The augmented-space theorem then states that any physical quantity
built out of the following Hamiltonian projected onto the so-calledaverage stateof the
system (analogous to the spin-aligned state of the Ising model) isexactlythe configuration
average:

H̃ = H1Ĩ+ H2

∑
R

PR ⊗ PR↓ + H3

∑
R

PR ⊗ {TR↓↑ + TR↑↓} +
∑
R

∑
R′

H4TRR′ ⊗ I (1)

where, for calculations of averaged local densities of states for a constituent labelled byλ,
we have

H1 = A(C/∆)∆λ − (EA(1/∆)∆λ − 1)

H2 = B(C/∆)∆λ − EB(1/∆)∆λ

H3 = F(C/∆)∆λ − EF(1/∆)∆λ

H4 = (∆λ)
−1/2SRR′(∆λ)

−1/2

A(Z) = xZA + yZB
B(Z) = (y − x)(ZA − ZB)
F (Z) = √xy(ZA − ZB).

C,∆ andS are matrices in angular momenta, the first two being diagonal.
When we talk of convergence of the recursion method, we have to be careful to state

precisely what we mean. Finite-space approximants to Green functions do not converge
for real energy values. This problem arises in every computational method, as noted by
Haydock [11]. The problem definitely arises in the usualk-space integration techniques,
where methods using either complex energies or complexks have been attempted. The
cause of this non-convergence is that an arbitrary small perturbation, such as the adding of
a single atom to a large but finite system, can shift all of the eigenvalues of the system.
This causes an infinite change in the Green function near its corresponding poles. Thus,
the precise meaning of the convergence of the recursion should imply the convergence of
physical quantities built out of it. Most physical quantities are averages over the spectrum
of the type

F(E) =
∫ E

−∞
f (E′)n(E′) dE′.

It is the convergence of these quantities which will decide whether the recursion is
convergent or not. For example, the Fermi energy is defined by∫ EF

−∞
n(E′) dE′ = ne

wherene is the total number of electrons, while the band energy is

U =
∫ EF

−∞
E′n(E′) dE′.

We shall study in general the convergence of indefinite integrals of the kind

Mk(E) =
∫ E

−∞
(E′)kn(E′) dE′.

The integrandE′k is monotonic and well behaved within the integration range.
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Errors can arise in the recursion procedure from three distinct sources: (i) the error
that arises because we carry out a finite number of recursion steps and then terminate the
continued fraction using one of the available terminators; (ii) the error that arises because
we choose a large but finite cluster in real space; and (iii) the error that arises because we
choose a finite subspace of the configuration space. We shall examine all three sources
systematically and make statements about our results.

2. Error analysis of the continued fraction

We shall first carry out a simple error analysis of the continued-fraction expression for the
Green function, because of the errors created in the continued-fraction coefficients. The
procedure is similar to the one discussed by Haydock [11].

The recursion is a two-term recurrence relation. We may therefore generate from this a
pair of linearly independent sets of polynomials through the relations

bn+1Xn+1(E) = (E − an)Xn(E)− bnXn−1 (2)

whereXn is eitherPn or Qn according to the initial conditions:

P1(E) = 1 P2(E) = (E − a1)/b2

Q1(E) = 0 Q2(E) = 1.

The approximated Green function in terms of the terminatorT (E) is given by

GN(E) = QN+1(E)− bNQN(E)T (E)

b1[PN+1(E)− bNPNT (E)] .

The terminator determines entirely the essential singularities of the spectrum. Haydock
[11] showed that a finite composition of fractional linear transformations like the one above
can at most add a finite number of poles to the spectrum. The essential singularities of
the exactG(E) and T (E) coincide. The fractional linear transformation redistributes the
spectral weights over the spectrum.

Let us now assume that we make errors{δan, δbn} in the corresponding continued-
fraction coefficients. If we now start generating the orthogonal polynomials, starting from
the exact initial conditions, but with the errors in the continued-fraction coefficients, we
shall obtain a pair of sets{P̃n} and{Q̃n}. In general we shall have

P̃n(E) = (1+ An(E))Pn(E)+ Bn(E)Qn(E).

If we substitute this back into the recurrence relation and keep only the first-order terms
in the errors,

An(E) = {δan [Pn+1(E)Qn+1(E)] + δbn [Pn(E)Qn+1(E)+ Pn+1(E)Qn(E)]}/b1

Bn(E) = {−δan Pn+1(E)
2− δbn [2Pn(E)Pn+1(E)]}/b1.

(3)

Using the above and the expression for the local density of states, we find that the
first-order relative error produced in the local density of states is

δn(E)

n(E)
= −2

[{ ∞∑
n=1

An(E)

}
+ b1R(E)

{ ∞∑
n=0

Bn(E)

}]
whereR(E) = RG(E). We define the weighted Hilbert transforms ofPn(E) as the
so-called associated functions:

Qn(E) = R
{∫ ∞
−∞

Pn(E
′)n(E′)

E − E′ dE′
}
.
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(a)

(b)

Figure 1. The moment difference functions for the 50–50 AgPd alloy, using seven augmented-
space shells and termination after different numbers of recursions: (a) (i)M

8,4
0 , (ii) M8,5

0 ,

(iii) M
8,6
0 , (iv) M8,7

0 ; (b) (i) M8,4
1 , (ii) M8,5

1 , (iii) M8,6
1 , (iv) M8,7

1 ; (c) (i) M8,4
2 , (ii) M8,5

2 ,

(iii) M8,6
2 , (iv) M8,7

2 .

These associated functions are also solutions of the three-term recursion. They are not
polynomials, but are nevertheless orthogonal to the setPn(E).

In terms of these, the error in the density of states is

δn(E)

n(E)
= 2

b1

{ ∞∑
n=1

[
δan Pn+1(E)Qn+1(E)+ 2δbn+1Pn+1Qn+2

]}
. (4)
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(c)

Figure 1. (Continued)

Such an expression is familiar from the multiple-scatteringt-matrix approaches. The
above is actually the contribution of thesingle-site t-matrixfor a set of scatterers at thesites
labelled byn, formed from the sum of individual single-site scatterers. This approximation
is rather similar to that which forms the basis of the multiple-scattering approach to the
coherent potential approximation.

The error in the Fermi energy will be given by

δEF = − 1

n(EF )

∞∑
n=1

{
δan A

(0)
n (EF )+ δbn+1B

(0)
n (EF )

}
(5)

while the errors in the various moment functions are

δMk(E) = δEF EkFn(EF )+
∞∑
n=1

{
δan A

(k)
n (EF )+ δbn+1B

(k)
n (EF )

}
(6)

where

A(k)n (E) =
2

b1

∫ E

−∞
Pn+1(E

′)Qn+1(E
′)(E′)kn(E′) dE′

B(k)n (E) =
4

b1

∫ E

−∞
Pn+1(E

′)Qn+1(E
′)(E′)kn(E′) dE′.

(7)

2.1. Termination error

In all computational calculations, the recursion can be carried out at most to a finite number
of steps, after which the continued fraction is terminated by a terminator functionT (E) as
discussed earlier. We have used the terminator of Luchini and Nex which smoothly joins
onto the rest of the continued fraction and which reproduces the band widths, the band
weights and the essential singularities of the Green function at the band edges. Its spectral
distribution is smooth, akin to a simple semicircular distribution.
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(a)

(b)

Figure 2. The convergence of the (a) Fermi energy and (b) band energy of a 50–50 AgPd
alloy, using the first-order TB-LMTO Hamiltonian, as we terminate the continued fraction after
different numbers of recursions on a seven-shell augmented-space cluster.

Consider two situations: one in which we terminate at theN th step, and hence for
which all coefficients forn 6 N are free from the termination error; and another in which
we terminate afterN+r steps. The recursive error in the Fermi energy and the band energy
are

1E
N+r,N
F = − 1

n(EF )

N+r+1∑
n=N+1

(δan A
(0)
n + δbn+1B

(0)
n )

1UN+r,N =
N+r+1∑
n=N+1

{
δan (A

(1)
n − EFA(0)n )+ δbn+1 (A

(1)
n − EFA(0)n )

}
.

Here,1UN+r,N is δUN+r − δUN and δan and δbn+1 are the errors produced in these
coefficients because of the termination where we replace the exact coefficients by the
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Figure 3. A log–log plot of the number of sites as we increase the number of shells in augmented
space.

terminator coefficients. If the coefficients converge, then ifN is sufficiently large these
recursive errors also converge. This is consistent with Haydock’s criterion of the divergence
of the series

∑
(1/bn).

To illustrate our results we have carried out the augmented-space recursion on a first-
order TB-LMTO Hamiltonian for the 50–50 AgPd alloy. The calculation was done using
the full LDA self-consistency program set up by us, including the symmetry and seed
energy recursions described earlier. In figures 1(a)–1(c) we show the moment difference
functions (a) for the zeroth moment, (b) for the first moment and (c) for the second moment.
The differences are between terminations after (i) eight and four recursions, (ii) eight
and five recursions, (iii) eight and six recursions and (iv) eight and seven recursions.
These differences are shown across the entire energy range, including the positive-energy
unoccupied states. The underlying augmented-space subspace on which the recursion is
carried out was seven shells wide, starting from an initial site.

We can make the following statements.

(i) Termination after four or five recursions gives extremely inaccurate results. The
range of the errors over the entire spectrum decreases quite rapidly as we terminate after
more steps.

(ii) The range of errors also decreases as we look at higher moments. This seems to be
a general observation—that the higher moments converge much faster than the lower ones.

Perhaps a much better illustration is shown in figures 2(a) and 2(b). This shows the
behaviour of the Fermi energy and band energy as functions of the number of recursions
before termination. Again we see that three or four recursions give very inaccurate results.
However, these physical properties converge reasonably quickly when we go up to eight
recursion steps. Further recursions reduce the errors to within the range of errors produced
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(a)

(b)

Figure 4. The moment difference functions for the 50–50 AgPd alloy, using six augmented-
space shells but restricting the size of the underlying real-space cluster to different numbers of
shells: (a) (i) the density of states, (ii)M6,3

0 , (iii) M6,4
0 , (iv) M6,5

0 ; (b) (i) the density of states,

(ii) M6,3
1 , (iii) M6,4

1 , (iv) M6,5
1 .

by the approximations within the TB-LMTO itself. So, as long as we are within the ambit
of the first-order TB-LMTO basis, it is unfruitful to carry out recursions beyond this stage.

2.2. Finite-size errors

The termination error is not always the predominant error in recursion calculations. Starting
from a singlestate |Ri, L, {∅}〉, the total number ofstatesover which the subsequent
recursively calculated basis spreads out, i.e. the rank of the subspace accessed by recursion,
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(a)

(b)

Figure 5. The convergence of the (a) Fermi energy and (b) band energy of a 50–50 AgPd alloy,
using the first-order TB-LMTO Hamiltonian, as we carry out recursion on increasing sizes of
the real-space cluster.

soon becomes prohibitively large. This is particularly true in the full augmented space.
Not only are the lattice neighbours of the initial site accessed, but so also are all possible
configurations of this cluster of sites. Figure 3 gives us some idea of the rank of the subspace
accessed per recursion step of a binary alloy on a f.c.c. lattice. Since, for transition metals,
there are nine orbitals per site, the total rank of the subspace accessed is actually nine times
as large. It is this point which made some earlier workers on the augmented-space formalism
state that it was a mathematically fascinating formalism, but computationally impractical
[12]. However, in subsequent studies we showed [3–5] that the point group symmetries of
the underlying lattice, the symmetry of the starting state and the underlying symmetries of
the configuration space (in the case where the disorder is homogeneous) drastically reduce
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(a)

(b)

Figure 6. The moment difference functions for the 50–50 AgPd alloy, using different-sized
augmented-space shells: (a) (i) the density of states, (ii)M

6,3
0 , (iii) M6,3

1 , (iv) M6,3
2 ; (b) (i) the

density of states, (ii)M6,4
0 , (iii) M6,4

1 , (iv) M6,4
2 ; (c) (i) the density of states, (ii)M6,5

0 , (iii) M6,5
1 ,

(iv) M6,5
2 .

the rank of the invariant subspace on which the recursion effectively acts.
Even after the reduction of the rank using local symmetries, we shall argue that we may

in fact restrict our subspace to a given rank and carry out the recursion over a much larger
number of steps. In this section, we shall analyse the error made when the recursion hits
a subspace boundary and carries on further. Since we do not allow Hamiltonian elements
within and outside this subspace, the problem is that of a perfectly reflecting boundary.
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(c)

Figure 6. (Continued)

The continued-fraction coefficients can be expressed in terms of either of the Hänkel
determinants of the Hamiltonian moments:

an+1 = Kn−2

Kn−1

Hn

Hn−1
+ Kn

Kn−1

Hn−1

Hn
n > 1

and

b2
n+1 =

HnHn−2

H 2
n−1

n > 1

where

Hn =
µ0 µ1 . . . µn
µ1 µ2 . . . µn+1

. . . . . . . . . . . .

µn µn+1 . . . µ2n

Kn =
µ1 µ2 . . . µn+1

µ2 µ3 . . . µn+2

. . . . . . . . . . . .

µn+1 µn+2 . . . µ2n+1

.

Thus if we make sure that the rank of the accessed subspace is sufficiently large that its
boundary is not hit by recursion up toM steps, then up to 2M moments of the density of
states are exactly reproduced, and errors occur only from moment 2M+1. For the coherent
potential approximation for diagonal disorder, we know that the first eight moments are exact
and the subsequent moments are O((1/Z)n), Z being the connectivity of the lattice. To
obtain comparatively accurate results with recursion we must perform at least four steps of
recursion and make sure that our estimates of errors in the subsequent recursion coefficients
and the terminator are comparable with those of the CPA.

The question that we wish to ask is the following: if instead of stopping the recursion
afterM steps and completing it with a terminator we carry on recursions for further steps,
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(a)

(b)

Figure 7. The convergence of the (a) Fermi energy and (b) band energy of a 50–50 AgPd alloy,
using the first-order TB-LMTO Hamiltonian, as we carry out recursion on increasing sizes of
the augmented-space cluster.

do we make unacceptable errors in the subsequent moments? Let us first illustrate what we
obtain from our numerical work on AgPd. We have constructed a six-shell augmented-space
map, but terminated its real-space part after three, four and five shells on a f.c.c. lattice. In
taking the augmented-space shells further out, we have made sure that all of the configuration
fluctuations are taken into account. The approximation is that the rank of the underlying
real-space lattice is taken to be finite. In all cases nine steps of recursion were performed
exactly and the procedure was terminated thereafter.

Figures 4(a) and 4(b) show the moment difference functions for the (a) first moment
and (b) second moment for differences between (i) six and three real-space shells, (ii) six
and four real-space shells, and (iii) six and five real-space shells. Figures 5(a) and 5(b)
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show the convergence of the Fermi and band energies with increasing number of real-space
shells. Our observations are similar to those for the termination errors. The error range
across the spectrum decreases rapidly as we increase the number of real-space shells. By
the time that we have reached six shells from the starting point the errors in the physical
quantities are within the range of errors in the basic formulation. Higher moments tend to
converge faster.

Do we understand why this is so? Perhaps the best way to illustrate this is to go from
the moment description of the continued-fraction coefficients to a graphical language in
terms of closed paths on the underlying lattice. We construct these paths by assigning to
each member of the countable basis avertexand to each off-diagonal matrix element of the
Hamiltonian alink. A sequence of connected vertices and links forms apath. Moments
can be written as sums of contributions of paths starting and ending at the initial site from
which the recursion begins. Such ageometricinterpretation has been used earlier [13–15].
In the language of paths, if we restrict our real-space lattice to a finite number of shells, then
the contributions of paths which cross this shell are neglected. However, if we look at the
set of closed paths of a certain lengthN , whenN is large, the number of paths which wind
round the initial site without hitting the boundary by far dominates the paths that spread
outwards crossing it. This is certainly true when the coordination of the lattice is large and
the paths have greater freedom for twisting around. It is not surprising that if we take our
underlying lattice to sufficiently large shells outwards, the errors made in discounting paths
crossing the boundary may not be large, since most of the contributions of the coefficients
will come from the winding paths which stay well within the boundary. Thus if we carry
on our recursion even after the boundary has been hit, and subsequently too, the recursions
will mostly sample the subspace inside the boundary.

Finally, we look at what happens when we restrict the entire augmented space itself
to a finite shell. We should notice here that if we restrict the augmented space to within
three shells, say, then automatically the real-space part is also restricted to within three
shells. This is because thenth augmented-space shell is reached from the starting site by
n operations of the effective Hamiltonian. Again in all cases nine recursions were carried
out and the terminator attached thereafter.

In figures 6(a)–6(c) we show the moment differences for the zeroth to the second
moments ((ii)–(iv)) for the difference between (a) six and three, (b) six and four and (c)
six and five augmented-space shells. Figures 7(a) and 7(b) show the convergences of
the Fermi and band energies. We notice that although the nature of the convergence is
different from the monotonic one that we met earlier, by the time we reach seven shells
in the augmented space the errors are well within the intrinsic errors of the TB-LMTO
approximations themselves.

These systematic studies give us an indication that such convergence analysis is essential
for every case under study using the augmented-space recursions. Errors will vary from
system to system. The most significant error comes from truncation of the real-space lattice.
Truncation in configuration space becomes significant only when there is clustering-based
or local-ordering-based structure in the density of states. Most of the time spent in carrying
out the recursion elapses because of the large rank of the subspace in augmented space in
which we carry out the recursion exactly. Termination errors are less significant and choice
of good terminators often pays rich dividends as regards accuracy. In general, we may
expect that nine to ten recursions on about seven augmented-space shells should provide
us with the requisite error range of tolerance consistent with the errors in the basis of
the representation (the TB-LMTO approximation in this case). However, for example, in
the case of the impurity band of Cu in Zn, where one expects cluster-based structures in
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the density of states, we may have to go as far as 14–15 steps of recursions on 9–10
augmented-space shells. This was reported earlier [7]. It should be noted that an advantage
of disordered systems is that the density of states has far less structure than it has in ordered
translationally invariant systems. The consequent convergence of the recursions is faster
since the moments themselves fluctuate less for such smoother functions.

Acknowledgment

One of us (ND) would like to thank the Council of Scientific and Industrial Research, India,
for providing me with financial assistance during the course of this work.

References

[1] Mookerjee A 1973J. Phys. C: Solid State Phys.6 1340
[2] Datta A and Mookerjee A 1992Int. J. Mod. Phys.B 6 3295
[3] Saha T, Dasgupta I and Mookerjee A 1994J. Phys.: Condens. Matter6 L245
[4] Mookerjee A and Prasad R 1993Phys. Rev.B 48 17 724
[5] Dasgupta I, Saha T and Mookerjee A 1995Phys. Rev.B 51 3413
[6] Sanyal B, Biswas P P, Fakhruddin M, Halder A, Ahmed M and Mookerjee A 1995J. Phys.: Condens. Matter

7 8569
[7] Saha T and Mookerjee A 1997J. Phys.: Condens. Matter10 2179
[8] Dasgupta I, Saha T, Mookerjee A and Das G P 1997J. Phys.: Condens. Matterat press
[9] Haydock R, Heine V and Kelly M J 1975J. Phys. C: Solid State Phys.8 2591

[10] Ghosh S, Das N and Mookerjee A 1997Indian J. Phys.at press
[11] Haydock R 1982Solid State Physicsvol 35 (New York: Academic) p 257
[12] Kaplan T, Leath P L, Gray L J and Diehl H W 1980 Phys. Rev.B 21 4230
[13] Haydock R 1972PhD ThesisUniversity of Cambridge
[14] Haydock R 1974J. Phys. A: Math. Gen.7 2120
[15] Kumar V, Mookerjee A and Srivastava V K 1982J. Phys. C: Solid State Phys.15 1939


